## ----eval=TRUE, echo=FALSE---------------------------------------------------- library(pulsar) ## ----eval=TRUE, message=FALSE------------------------------------------------- library(huge) library(Matrix) p <- 40 n <- round(8*p * log(p)) set.seed(10010) dat <- huge.generator(n, p, 'hub', verbose=FALSE, v=.3, u=.1) ## Generate correlated binomial data with the Normal copula method X <- apply(apply(scale(dat$data), 2, pnorm), 2, qbinom, size=1, prob=.5) ising.net <- function(Z, lambda, link='binomial') { p <- ncol(Z) l <- length(lambda) estFun <- function(i) { betamat <- matrix(NA, p, l) betamat[-i,] <- as.matrix(glmnet::glmnet(Z[,-i], Z[,i], family=link, lambda=lambda)$beta) betamat } est <- parallel::mcmapply(estFun, 1:p, mc.cores=1, SIMPLIFY='array') list(path=apply(est, 2, function(x) { diag(x) <- 0 ; as(x!=0, "lgCMatrix") })) } lams <- getLamPath(.2, .005, 30) out <- pulsar(X, ising.net, fargs=list(lambda=lams), criterion=c('stars', 'sufficiency'), subsample.ratio=.6, rep.num=60, seed=10010) ## ----eval=TRUE, fig.width=7, fig.height=5------------------------------------- plot(lams, out$sufficiency$merge[1,], type='l', ylab="sufficiency") points(lams, out$sufficiency$merge[4,], type='l', col='red') ## ----eval=TRUE---------------------------------------------------------------- tandonest <- function(i, out, tu, tl) { rmerge <- out$sufficiency$merge p <- nrow(rmerge) l <- ncol(rmerge) prime <- tail(which(rmerge[i,] > tu), 1) if (length(prime) == 0) return(rep(FALSE, p)) naught <- tail(which(rmerge[i,1:prime] < tl), 1) if (length(naught) == 1) { pmerge <- out$stars$merge[[naught]][i,] return(pmerge >= (1+sqrt(1-4*tl))/2) } else return(rep(FALSE, p)) } net <- sapply(1:p, tandonest, out=out, tu=.2, tl=.15) ## Symmetrize net <- sign(t(net) + net) ## ----eval=TRUE, warning=FALSE, message=FALSE, fig.width=7, fig.height=5------- dat <- huge.generator(n, p, 'hub', verbose=FALSE, v=.1, u=.4) out.diss <- pulsar(dat$data, fargs=list(lambda=lams, verbose=FALSE), rep.num=20, criterion=c('diss', 'stars')) fit <- refit(out.diss, 'stars') ## Compute the max agglomerative coefficient over the full path path.diss <- lapply(fit$est$path, pulsar:::graph.diss) library(cluster) acfun <- function(x) agnes(x, diss=TRUE)$ac ac <- sapply(path.diss, acfun) ac.sel <- out.diss$diss$merge[[which.max(ac)]] ## Estimate the diss bias dissbias <- sapply(out.diss$diss$merge, function(x) mean((x-ac.sel)^2)/2) varbias <- out.diss$diss$summary + dissbias ## Select the index and refit opt.index(out.diss, 'diss') <- which.min(varbias) fit.diss <- refit(out.diss) plot(out.diss) par(mfrow=c(1,2)) plot(network::network(as.matrix(fit.diss$refit$diss)), main='A-AGNES') plot(network::network(as.matrix(fit.diss$refit$stars)), main='stars')