## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----example------------------------------------------------------------------ library(rifttable) data(cancer, package = "survival") cancer <- cancer |> tibble::as_tibble() |> dplyr::mutate( # The exposure (here, 'sex') must be categorical (a factor) sex = factor( sex, levels = 1:2, labels = c("Male", "Female") ), time = time / 365.25, # transform to years status = status - 1 ) tibble::tribble( ~label, ~type, "**Absolute estimates**", "", "*Counts and sums*", "", " Observations, *N*", "total", " Events, *n*", "events", " Events/observations", "events/total", " Events/person-years", "events/time", "*Follow-up*", "", " Person-years", "time", " Maximum follow-up, years", "maxfu", " Median follow-up, years", "medfu", " Median follow-up (IQR), years", "medfu (iqr)", "*Rates*", "", " Rate per 1000 person-years", "rate", " Rate per 1000 person-years (95% CI)", "rate (ci)", " Events/py (rate per 1000 py)", "events/time (rate)", "*Risks*", "", " 1-year survival", "surv", " 1-year survival (95% CI)", "surv (ci)", " 1-year risk/cumulative incidence", "cuminc", " 1-year risk (95% CI)", "cuminc (ci)", " Median survival, years", "medsurv", " Median survival (95 CI), years", "medsurv (ci)", "", "", "**Comparative estimates**", "", " 1-year survival difference", "survdiff", " 1-year risk difference", "cumincdiff", " 1-year survival ratio", "survratio", " 1-year risk ratio", "cumincratio", " Hazard ratio (95% CI)", "hr" ) |> dplyr::mutate( time = "time", event = "status", exposure = "sex", arguments = list(list(timepoint = 1)) ) |> rifttable( data = cancer, overall = TRUE ) |> rt_gt()