Type: Package
Title: Robust Inference for Meta-Analysis with Influential Outlying Studies
Version: 1.2-1
Date: 2023-11-08
Maintainer: Hisashi Noma <noma@ism.ac.jp>
Description: Robust inference methods for fixed-effect and random-effects models of meta-analysis are implementable. The robust methods are developed using the density power divergence that is a robust estimating criterion developed in machine learning theory, and can effectively circumvent biases and misleading results caused by influential outliers. The density power divergence is originally introduced by Basu et al. (1998) <doi:10.1093/biomet/85.3.549>, and the meta-analysis methods are developed by Noma et al. (2022) <forthcoming>.
Depends: R (≥ 3.5.0)
Imports: stats, metafor
License: GPL-3
Encoding: UTF-8
LazyData: true
NeedsCompilation: no
Packaged: 2023-11-08 06:51:42 UTC; Hisashi
Author: Hisashi Noma [aut, cre], Shonosuke Sugasawa [aut], Toshi A. Furukawa [aut]
Repository: CRAN
Date/Publication: 2023-11-08 07:10:02 UTC

The 'robustmeta' package.

Description

A R package for implementing the robust inference methods for meta-analysis involving influential outlying studies.

References

Noma, H., Sugasawa, S. and Furukawa, T. A. (2022). Robust inference methods for meta-analysis involving influential outlying studies. In Preparation.


Rubinstein et al. (2019)'s chronic low back pain data

Description

Usage

data(clbp)

Format

A data frame with 23 rows and 8 variables

References

Rubinstein, S. M,, de Zoete, A., van Middelkoop, M., Assendelft, W. J. J., de Boer, M. R., van Tulder, M. W. (2019). Benefits and harms of spinal manipulative therapy for the treatment of chronic low back pain: systematic review and meta-analysis of randomised controlled trials. BMJ. 364: l689.


Robust estimation for meta-analysis with influential outlying studies

Description

Implementing the robust inference for meta-analysis involving influential outlying studies based on the density power divergence.

Usage

rmeta(y, v, model="RE", gamma=0.01)

Arguments

y

A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, log HR, RD)

v

A vector of the variance estimate of y

model

Type of the pooling model; "FE": Fixed-effect model or "RE": Random-effects model; Default is "RE"

gamma

Unit of grid search to explore the optimal value of tuning parameter alpha on (0,1); Default is 0.01

Value

Results of the robust inference for meta-analysis.

References

Noma, H., Sugasawa, S. and Furukawa, T. A. (2022). Robust inference methods for meta-analysis involving influential outlying studies. In Preparation.

Basu, A., Harris, I. R., Hjort, N. L., Jones, M. C. (1998). Robust and efficient estimation by minimizing a density power divergence. Biometrika. 85: 549-559.

Sugasawa, S. and Yonekura, S. (2021). On selection criteria for the tuning parameter in robust divergence. Entropy. 23: 1147.

Examples

require(metafor)
data(clbp)
edat1 <- escalc(measure="SMD",m1i=m1,m2i=m2,sd1i=s1,sd2i=s2,n1i=n1,n2i=n2,data=clbp)
DL1 <- rma(yi, vi, data=edat1, method="DL")
print(DL1)         # ordinary DerSimonian-Laird method
plot(DL1)   # plots of influential statistics, etc.

###

y <- as.numeric(edat1$yi)		# definition of summary statistics
v <- edat1$vi

rmeta(y,v)                 # robust inference based on the random-effects model
rmeta(y,v,model="FE")      # robust inference based on the fixed-effect model

Thomas et al. (2015)'s varenicline data

Description

Usage

data(varenicline)

Format

A data frame with 29 rows and 5 variables

References

Thomas, K. H., Martin, R. M., Knipe, D. W., Higgins, J. P., Gunnell, D. (2015). Risk of neuropsychiatric adverse events associated with varenicline: systematic review and meta-analysis. BMJ. 350: h1109.