Type: Package
Title: Survival Model-Based Imputation for Laboratory Non-Detect Data
Version: 0.1.0
Description: Implements survival-model-based imputation for censored laboratory measurements, including Tobit-type models with several distribution options. Suitable for data with values below detection or quantification limits, the package identifies the best-fitting distribution and produces realistic imputations that respect the censoring thresholds.
License: MIT + file LICENSE
Depends: R (≥ 4.1.0)
Imports: data.table (≥ 1.17.0), stats, survival (≥ 3.0.0), truncnorm (≥ 1.0.0)
Suggests: ggplot2, knitr, rmarkdown, testthat (≥ 3.0.0)
VignetteBuilder: knitr
Encoding: UTF-8
Language: en-US
LazyData: true
RoxygenNote: 7.3.3
URL: https://lpereira-ue.github.io/survlab/, https://github.com/lpereira-ue/survlab
NeedsCompilation: no
Packaged: 2025-12-06 16:28:23 UTC; lpereira
Author: Luís Pereira ORCID iD [aut, cre], Paulo Infante ORCID iD [aut], Teresa Ferreira ORCID iD [ths], Paulo Quaresma ORCID iD [ths]
Maintainer: Luís Pereira <d57177@alunos.uevora.pt>
Repository: CRAN
Date/Publication: 2025-12-11 13:40:02 UTC

Impute Non-Detect Values in Laboratory Data

Description

This function imputes non-detect (censored) values in environmental laboratory analytical data using survival models with automatic distribution selection. It validates data quality requirements and fits multiple distributions to select the best model based on AIC. Each imputed value is guaranteed to be below its respective detection limit and above the specified minimum value.

Usage

impute_nondetect(
  dt,
  value_col = "value",
  cens_col = "censored",
  parameter_col = NULL,
  unit_col = NULL,
  dist = c("gaussian", "lognormal", "weibull", "exponential", "logistic", "loglogistic"),
  min_observations = 25,
  max_censored_pct = 75,
  min_value = 0,
  verbose = FALSE
)

Arguments

dt

A data.frame or data.table containing laboratory analytical data

value_col

Character string specifying the column name containing values

cens_col

Character string specifying the column name containing censoring indicators (0 = non-detect/censored, 1 = detected/observed)

parameter_col

Character string specifying the column name containing parameter names (optional, for validation)

unit_col

Character string specifying the column name containing units (optional, for validation)

dist

Character vector of distributions to test. Options include: "gaussian", "lognormal", "weibull", "exponential", "logistic", "loglogistic"

min_observations

Minimum number of observations required for modeling (default: 25)

max_censored_pct

Maximum percentage of censored values allowed (default: 75)

min_value

Minimum allowable value for imputed concentrations (default: 0, use 1e-10 for strictly positive)

verbose

Logical indicating whether to display progress messages and distribution fitting information (default: FALSE)

Details

The function performs several validation checks: 1. Ensures sufficient sample size (>= min_observations) 2. Checks that censoring percentage is reasonable (<= max_censored_pct) 3. Validates that only one parameter and unit are present (if columns provided) 4. Tests multiple distributions and selects the best based on AIC 5. Generates random imputed values below each observation's detection limit and above min_value

For non-detect observations (censored = 0), the value in value_col is treated as the detection limit for that specific analysis, allowing for different detection limits across samples or analytical methods.

IMPORTANT: This function should be applied to data containing only ONE parameter at a time. Different environmental parameters have different distributions and should not be modeled together.

When verbose = FALSE, the function operates silently except for critical errors, making it suitable for batch processing of multiple parameters.

Value

A data.table with additional columns:

[value_col]_imputed

Imputed values for non-detect observations

[value_col]_final

Final values combining original detected and imputed non-detect values

The returned object also has attributes containing model information:

best_model

The fitted survival model object

best_distribution

Name of the best-fitting distribution

detection_limits

Vector of all detection limits found in the data

max_detection_limit

The highest detection limit (for reference)

parameter

Parameter name (if parameter_col provided)

unit

Unit of measurement (if unit_col provided)

aic

AIC value of the best model

sample_size

Total number of observations

censored_pct

Percentage of censored observations

Examples

# Load example data
data(multi_censored_data)

# Basic imputation with default settings
set.seed(123)
result <- impute_nondetect(
  dt = multi_censored_data,
  value_col = "value",
  cens_col = "censored",
  verbose = FALSE
)

# View imputed values for non-detects
head(result[censored == 0, .(value, value_imputed, value_final)])

# Check best distribution selected
attr(result, "best_distribution")

# With parameter and unit validation
result <- impute_nondetect(
  dt = multi_censored_data,
  value_col = "value",
  cens_col = "censored",
  parameter_col = "parameter",
  unit_col = "unit"
)

# For strictly positive values (avoiding exactly zero)
result <- impute_nondetect(
  dt = multi_censored_data,
  value_col = "value",
  cens_col = "censored",
  min_value = 1e-10,
  verbose = FALSE
)


Environmental Laboratory Nitrate Data with Non-Detects

Description

A synthetic dataset containing environmental nitrate measurements with non-detect values, generated from a lognormal distribution. This dataset represents typical water quality monitoring data from an environmental laboratory, designed for demonstrating survival model-based imputation techniques.

Usage

multi_censored_data

Format

A data.table with 200 rows and 4 variables:

parameter

Character string indicating the chemical parameter ("Nitrate")

unit

Character string indicating the unit of measurement ("mg/l NO3")

value

Numeric values representing either detected measurements or detection limits for non-detect observations

censored

Integer indicator where 0 = non-detect (below detection limit), 1 = detected (above detection limit)

Details

This dataset simulates real-world environmental water quality data where nitrate measurements below certain detection limits are reported as non-detects. The data includes:

For non-detect observations (censored = 0), the 'value' column contains the detection limit for that specific analysis. For detected measurements (censored = 1), the 'value' column contains the actual measured nitrate concentration.

Source

Synthetic data generated for package demonstration, based on typical environmental water quality monitoring programs

Examples

data(multi_censored_data)

# Basic data exploration
multi_censored_data[, .(
  total_samples = .N,
  non_detects = sum(censored == 0),
  detects = sum(censored == 1)
)]

# View parameter and unit information
multi_censored_data[, .(
  parameter = unique(parameter),
  unit = unique(unit)
)]

# View detection limit levels
multi_censored_data[censored == 0, unique(value)]

# Apply survival model imputation
result <- impute_nondetect(multi_censored_data,
                          parameter_col = "parameter",
                          unit_col = "unit")
validate_imputation(result)

Validate Laboratory Non-Detect Imputation Results

Description

This function validates the quality of non-detect value imputation by checking that imputed values are below their respective limits of quantification and providing comprehensive summary statistics and model diagnostics.

Usage

validate_imputation(
  dt_imputed,
  value_col = "value",
  cens_col = "censored",
  verbose = TRUE
)

Arguments

dt_imputed

A data.table returned from impute_nondetect

value_col

Character string specifying the column name containing original values

cens_col

Character string specifying the column name containing censoring indicators

verbose

Logical indicating whether to print validation results to console (default: TRUE)

Details

The function checks:

Value

Invisibly returns the input data.table. When verbose = TRUE, prints validation results to console including:

Examples

data(multi_censored_data)
result <- impute_nondetect(multi_censored_data, verbose = FALSE)
validate_imputation(result)

# Silent validation for batch processing
validate_imputation(result, verbose = FALSE)