| Type: | Package |
| Title: | Survival Model-Based Imputation for Laboratory Non-Detect Data |
| Version: | 0.1.0 |
| Description: | Implements survival-model-based imputation for censored laboratory measurements, including Tobit-type models with several distribution options. Suitable for data with values below detection or quantification limits, the package identifies the best-fitting distribution and produces realistic imputations that respect the censoring thresholds. |
| License: | MIT + file LICENSE |
| Depends: | R (≥ 4.1.0) |
| Imports: | data.table (≥ 1.17.0), stats, survival (≥ 3.0.0), truncnorm (≥ 1.0.0) |
| Suggests: | ggplot2, knitr, rmarkdown, testthat (≥ 3.0.0) |
| VignetteBuilder: | knitr |
| Encoding: | UTF-8 |
| Language: | en-US |
| LazyData: | true |
| RoxygenNote: | 7.3.3 |
| URL: | https://lpereira-ue.github.io/survlab/, https://github.com/lpereira-ue/survlab |
| NeedsCompilation: | no |
| Packaged: | 2025-12-06 16:28:23 UTC; lpereira |
| Author: | Luís Pereira |
| Maintainer: | Luís Pereira <d57177@alunos.uevora.pt> |
| Repository: | CRAN |
| Date/Publication: | 2025-12-11 13:40:02 UTC |
Impute Non-Detect Values in Laboratory Data
Description
This function imputes non-detect (censored) values in environmental laboratory analytical data using survival models with automatic distribution selection. It validates data quality requirements and fits multiple distributions to select the best model based on AIC. Each imputed value is guaranteed to be below its respective detection limit and above the specified minimum value.
Usage
impute_nondetect(
dt,
value_col = "value",
cens_col = "censored",
parameter_col = NULL,
unit_col = NULL,
dist = c("gaussian", "lognormal", "weibull", "exponential", "logistic", "loglogistic"),
min_observations = 25,
max_censored_pct = 75,
min_value = 0,
verbose = FALSE
)
Arguments
dt |
A data.frame or data.table containing laboratory analytical data |
value_col |
Character string specifying the column name containing values |
cens_col |
Character string specifying the column name containing censoring indicators (0 = non-detect/censored, 1 = detected/observed) |
parameter_col |
Character string specifying the column name containing parameter names (optional, for validation) |
unit_col |
Character string specifying the column name containing units (optional, for validation) |
dist |
Character vector of distributions to test. Options include: "gaussian", "lognormal", "weibull", "exponential", "logistic", "loglogistic" |
min_observations |
Minimum number of observations required for modeling (default: 25) |
max_censored_pct |
Maximum percentage of censored values allowed (default: 75) |
min_value |
Minimum allowable value for imputed concentrations (default: 0, use 1e-10 for strictly positive) |
verbose |
Logical indicating whether to display progress messages and distribution fitting information (default: FALSE) |
Details
The function performs several validation checks: 1. Ensures sufficient sample size (>= min_observations) 2. Checks that censoring percentage is reasonable (<= max_censored_pct) 3. Validates that only one parameter and unit are present (if columns provided) 4. Tests multiple distributions and selects the best based on AIC 5. Generates random imputed values below each observation's detection limit and above min_value
For non-detect observations (censored = 0), the value in value_col is treated as the detection limit for that specific analysis, allowing for different detection limits across samples or analytical methods.
IMPORTANT: This function should be applied to data containing only ONE parameter at a time. Different environmental parameters have different distributions and should not be modeled together.
When verbose = FALSE, the function operates silently except for critical errors, making it suitable for batch processing of multiple parameters.
Value
A data.table with additional columns:
- [value_col]_imputed
Imputed values for non-detect observations
- [value_col]_final
Final values combining original detected and imputed non-detect values
The returned object also has attributes containing model information:
- best_model
The fitted survival model object
- best_distribution
Name of the best-fitting distribution
- detection_limits
Vector of all detection limits found in the data
- max_detection_limit
The highest detection limit (for reference)
- parameter
Parameter name (if parameter_col provided)
- unit
Unit of measurement (if unit_col provided)
- aic
AIC value of the best model
- sample_size
Total number of observations
- censored_pct
Percentage of censored observations
Examples
# Load example data
data(multi_censored_data)
# Basic imputation with default settings
set.seed(123)
result <- impute_nondetect(
dt = multi_censored_data,
value_col = "value",
cens_col = "censored",
verbose = FALSE
)
# View imputed values for non-detects
head(result[censored == 0, .(value, value_imputed, value_final)])
# Check best distribution selected
attr(result, "best_distribution")
# With parameter and unit validation
result <- impute_nondetect(
dt = multi_censored_data,
value_col = "value",
cens_col = "censored",
parameter_col = "parameter",
unit_col = "unit"
)
# For strictly positive values (avoiding exactly zero)
result <- impute_nondetect(
dt = multi_censored_data,
value_col = "value",
cens_col = "censored",
min_value = 1e-10,
verbose = FALSE
)
Environmental Laboratory Nitrate Data with Non-Detects
Description
A synthetic dataset containing environmental nitrate measurements with non-detect values, generated from a lognormal distribution. This dataset represents typical water quality monitoring data from an environmental laboratory, designed for demonstrating survival model-based imputation techniques.
Usage
multi_censored_data
Format
A data.table with 200 rows and 4 variables:
- parameter
Character string indicating the chemical parameter ("Nitrate")
- unit
Character string indicating the unit of measurement ("mg/l NO3")
- value
Numeric values representing either detected measurements or detection limits for non-detect observations
- censored
Integer indicator where 0 = non-detect (below detection limit), 1 = detected (above detection limit)
Details
This dataset simulates real-world environmental water quality data where nitrate measurements below certain detection limits are reported as non-detects. The data includes:
Single parameter (Nitrate) with consistent units (mg/l NO3)
Multiple detection limit levels reflecting different analytical conditions
Realistic distribution of detected vs non-detect values (83.5
Detection limits ranging from 5 to 25 mg/l NO3
Lognormal distribution typical of environmental contaminant data
For non-detect observations (censored = 0), the 'value' column contains the detection limit for that specific analysis. For detected measurements (censored = 1), the 'value' column contains the actual measured nitrate concentration.
Source
Synthetic data generated for package demonstration, based on typical environmental water quality monitoring programs
Examples
data(multi_censored_data)
# Basic data exploration
multi_censored_data[, .(
total_samples = .N,
non_detects = sum(censored == 0),
detects = sum(censored == 1)
)]
# View parameter and unit information
multi_censored_data[, .(
parameter = unique(parameter),
unit = unique(unit)
)]
# View detection limit levels
multi_censored_data[censored == 0, unique(value)]
# Apply survival model imputation
result <- impute_nondetect(multi_censored_data,
parameter_col = "parameter",
unit_col = "unit")
validate_imputation(result)
Validate Laboratory Non-Detect Imputation Results
Description
This function validates the quality of non-detect value imputation by checking that imputed values are below their respective limits of quantification and providing comprehensive summary statistics and model diagnostics.
Usage
validate_imputation(
dt_imputed,
value_col = "value",
cens_col = "censored",
verbose = TRUE
)
Arguments
dt_imputed |
A data.table returned from |
value_col |
Character string specifying the column name containing original values |
cens_col |
Character string specifying the column name containing censoring indicators |
verbose |
Logical indicating whether to print validation results to console (default: TRUE) |
Details
The function checks:
All imputed values are strictly below their respective limits of quantification
Uniqueness of imputed values
Summary statistics by limits of quantification level
Model fit information including parameter and unit details
Dataset characteristics (sample size, censoring percentage)
Value
Invisibly returns the input data.table. When verbose = TRUE, prints validation results to console including:
Whether all imputed values are below their detection limits
Number of duplicate imputed values (if any)
Summary statistics by detection limit level
Model fit information
Examples
data(multi_censored_data)
result <- impute_nondetect(multi_censored_data, verbose = FALSE)
validate_imputation(result)
# Silent validation for batch processing
validate_imputation(result, verbose = FALSE)