Type: | Package |
Title: | VPC Percentiles and Prediction Intervals |
Version: | 1.5.2 |
Description: | Perform a Visual Predictive Check (VPC), while accounting for stratification, censoring, and prediction correction. Using piping from 'magrittr', the intuitive syntax gives users a flexible and powerful method to generate VPCs using both traditional binning and a new binless approach Jamsen et al. (2018) <doi:10.1002/psp4.12319> with Additive Quantile Regression (AQR) and Locally Estimated Scatterplot Smoothing (LOESS) prediction correction. |
URL: | https://github.com/certara/tidyvpc |
BugReports: | https://github.com/certara/tidyvpc/issues |
Depends: | R (≥ 3.5.0), |
Imports: | data.table (≥ 1.9.8), magrittr, quantreg (≥ 5.51), rlang (≥ 0.3.0), methods, mgcv, classInt, cluster, ggplot2, stats, fastDummies, utils, egg |
Suggests: | dplyr, KernSmooth, knitr, R.rsp, nlmixr2, shiny, remotes, vpc, rmarkdown, testthat (≥ 2.1.0), vdiffr (≥ 1.0.0) |
License: | MIT + file LICENSE |
LazyData: | true |
Encoding: | UTF-8 |
VignetteBuilder: | R.rsp |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2024-11-21 22:31:40 UTC; jcraig |
Author: | Olivier Barriere [aut],
Benjamin Rich [aut],
James Craig |
Maintainer: | James Craig <james.craig@certara.com> |
Repository: | CRAN |
Date/Publication: | 2024-11-21 23:10:02 UTC |
Obtain information about the bins from a tidyvpcobj
Description
Obtain information about the bins from a tidyvpcobj
Usage
bininfo(o, ...)
## S3 method for class 'tidyvpcobj'
bininfo(o, by.strata = o$bin.by.strata, ...)
Arguments
o |
An object. |
... |
Additional arguments. |
by.strata |
Should the calculations be done by strata? Defaults to what was specified when the binning was done. |
Value
A 'data.table' containing the following columns:
-
nobs
: Number of observed data points in the bin -
xmedian
: Median x-value of the observed data points in the bin -
xmean
: Mean x-value of the observed data points in the bin -
xmax
: Maximum x-value of the observed data points in the bin -
xmin
: Minimum x-value of the observed data points in the bin -
xmid
: Value halfway between 'xmin' and 'xmax'. x-value of the observed data points in the bin -
xleft
: Value halfway between the minimum x-value of the current bin and the maximum x-value of the previous bin to the left (for the left-most bin, it is the minimum x-value). -
xright
: Value halfway between the maximum x-value of the current bin and the minimum x-value of the next bin to the right (for the right-most bin, it is the maximum x-value). -
xcenter
: Value halfway between 'xleft' and 'xright'.
In addition, if stratification was performed, the stratification columns will be included as well.
Methods (by class)
-
bininfo(tidyvpcobj)
: Method fortidyvpcobj
.
Perform binless Visual Predictive Check (VPC)
Description
Use this function in place of traditional binning methods to derive VPC. For continuous
VPC, this is obtained using additive quantile regression (quantreg::rqss()
) and LOESS for pcVPC. While for categorical
VPC, this is obtained using a generalized additive model (gam(family = "binomial")
).
Usage
binless(o, ...)
## S3 method for class 'tidyvpcobj'
binless(
o,
optimize = TRUE,
optimization.interval = c(0, 7),
loess.ypc = NULL,
lambda = NULL,
span = NULL,
sp = NULL,
...
)
Arguments
o |
A |
... |
Other arguments to include will be ignored. |
optimize |
Logical indicating whether smoothing parameters should be optimized using AIC. |
optimization.interval |
Numeric vector of length 2 specifying the min/max range of smoothing parameter for optimization. Only applicable if |
loess.ypc |
(Deprecated) Argument is ignored. For a LOESS pcVPC using the 'binless' method, usage of |
lambda |
Numeric vector of length 3 specifying lambda values for each quantile. If stratified, specify a |
span |
Numeric between 0,1 specifying smoothing parameter for LOESS prediction correction. Only applicable for continuous VPC with |
sp |
List of smoothing parameters applied to |
Value
For continuous VPC, updates tidyvpcobj
with additive quantile regression fits for observed and simulated data for quantiles specified in the qpred
argument of vpcstats()
.
If the optimize = TRUE
argument is specified, the resulting tidyvpcobj
will contain optimized lambda values according to AIC. For prediction
corrected VPC (pcVPC), specifying loess.ypc = TRUE
will return optimized span value for LOESS smoothing. For categorical VPC,
updates tidyvpcobj
with fits obtained by gam(family="binomial")
for observed and simulated data for each category of DV (in each stratum if stratify
defined).
If optimize = TRUE
argument is specified, the resulting tidyvpcobj
wil contain optimized sp
values according to AIC.
See Also
observed
simulated
censoring
predcorrect
stratify
binning
vpcstats
Examples
require(magrittr)
require(data.table)
obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]
vpc <- observed(obs_data, y = DV, x = TIME) %>%
simulated(sim_data, y = DV) %>%
binless() %>%
vpcstats()
# Binless example with LOESS prediction correction
obs_data$PRED <- sim_data[REP == 1, PRED]
vpc <- observed(obs_data, y = DV, x = TIME) %>%
simulated(sim_data, y = DV) %>%
binless(optimize = TRUE) %>%
predcorrect(pred = PRED) %>%
vpcstats()
# Binless example with user specified lambda values stratified on
# "GENDER" with 2 levels ("M", "F"), 10%, 50%, 90% quantiles.
lambda_strat <- data.table(
GENDER_M = c(3,5,2),
GENDER_F = c(1,3,4)
)
vpc <- observed(obs_data, y = DV, x = TIME) %>%
simulated(sim_data, y = DV) %>%
stratify(~ GENDER) %>%
binless(optimize = FALSE, lambda = lambda_strat) %>%
vpcstats(qpred = c(0.1, 0.5, 0.9))
# Binless example for categorical DV with optimized smoothing
vpc <- observed(obs_cat_data, x = agemonths, yobs = zlencat) %>%
simulated(sim_cat_data, ysim = DV) %>%
stratify(~ Country_ID_code) %>%
binless() %>%
vpcstats(vpc.type = "cat", quantile.type = 6)
# Binless example for categorical DV with user specified sp values
user_sp <- list(
Country1_prob0 = 100,
Country1_prob1 = 3,
Country1_prob2 = 4,
Country2_prob0 = 90,
Country2_prob1 = 3,
Country2_prob2 = 4,
Country3_prob0 = 55,
Country3_prob1 = 3,
Country3_prob2 = 200)
vpc <- observed(obs_cat_data, x = agemonths, yobs = zlencat) %>%
simulated(sim_cat_data, ysim = DV) %>%
stratify(~ Country_ID_code) %>%
binless(optimize = FALSE, sp = user_sp) %>%
vpcstats(vpc.type = "categorical", conf.level = 0.9, quantile.type = 6)
Binning methods for Visual Predictive Check (VPC)
Description
This function executes binning methods available in classInt i.e. "jenks", "kmeans", "sd", "pretty", "pam", "kmeans", "hclust", "bclust", "fisher", "dpih", "box", "headtails", and "maximum".
You may also bin directly on x-variable or alternatively specify "centers" or "breaks". For explanation of binning methods see classIntervals
.
Usage
binning(o, ...)
## S3 method for class 'tidyvpcobj'
binning(
o,
bin,
data = o$data,
xbin = "xmedian",
centers,
breaks,
nbins,
altx,
stratum = NULL,
by.strata = TRUE,
...
)
Arguments
o |
A |
... |
Other arguments to include for |
bin |
Character string indicating binning method or unquoted variable name if binning on x-variable. |
data |
Observed data supplied in |
xbin |
Character string indicating midpoint type for binning. |
centers |
Numeric vector of centers for binning. Use |
breaks |
Numeric vector of breaks for binning. Use |
nbins |
Numeric number indicating the number of bins to use. |
altx |
Unquoted variable name in observed data for alternative x-variable binning. |
stratum |
List indicating the name of stratification variable and level, if using different binning methods by strata. |
by.strata |
Logical indicating whether binning should be performed by strata. |
Value
Updates tidyvpcobj
with data.frame
containing bin information including left/right boundaries and midpoint, as specified in xbin
argument.
See Also
observed
simulated
censoring
predcorrect
stratify
binless
vpcstats
Examples
require(magrittr)
# Binning on x-variable NTIME
vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV) %>%
binning(bin = NTIME) %>%
vpcstats()
# Binning using ntile and xmean for midpoint
vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV) %>%
binning(bin = "ntile", nbins = 8, xbin = "xmean") %>%
vpcstats()
# Binning using centers
vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV) %>%
binning(bin = "centers", centers = c(1,3,5,7)) %>%
vpcstats()
# Different Binning for each level of Strata
vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV) %>%
stratify(~ GENDER) %>%
binning(stratum = list(GENDER = "M"), bin = "jenks", nbins = 5, by.strata = TRUE) %>%
binning(stratum = list(GENDER = "F"), bin = "kmeans", nbins = 4, by.strata = TRUE) %>%
vpcstats()
# Binning Categorical DV using rounded time variable
vpc <- observed(obs_cat_data, x = agemonths, y = zlencat ) %>%
simulated(sim_cat_data, y = DV) %>%
binning(bin = round(agemonths, 0)) %>%
vpcstats(vpc.type = "categorical")
Different functions that perform binning.
Description
Different functions that perform binning.
Usage
cut_at(breaks)
nearest(centers)
bin_by_ntile(nbins)
bin_by_eqcut(nbins)
bin_by_pam(nbins)
bin_by_classInt(style, nbins = NULL)
Arguments
breaks |
A numeric vector of values that designate cut points between bins. |
centers |
A numeric vector of values that designate the center of each bin. |
nbins |
The number of bins to split the data into. |
style |
a binning style (see classIntervals for details). |
Value
Each of these functions returns a function of a single numeric vector 'x' that assigns each value of 'x' to a bin.
Examples
x <- c(rnorm(10, 1, 1), rnorm(10, 3, 2), rnorm(20, 5, 3))
centers <- c(1, 3, 5)
nearest(centers)(x)
breaks <- c(2, 4)
cut_at(breaks)(x)
bin_by_eqcut(nbins=4)(x)
bin_by_ntile(nbins=4)(x)
bin_by_pam(nbins=4)(x)
bin_by_classInt("pretty", nbins=4)(x)
Censoring observed data for Visual Predictive Check (VPC)
Description
Specify censoring variable or censoring value for VPC.
Usage
censoring(o, ...)
## S3 method for class 'tidyvpcobj'
censoring(o, blq, lloq, alq, uloq, data = o$data, ...)
Arguments
o |
A |
... |
Other arguments to include. |
blq |
blq variable if present in observed data. |
lloq |
Numeric value or numeric variable in data indicating the upper limit of quantification. |
alq |
Logical variable indicating above limit of quantification. |
uloq |
Numeric value or numeric variable in data indicating the upper limit of quantification. |
data |
Observed data supplied in |
Value
Updates obs
data.frame
in tidypcobj
with censored values for observed data which includes lloq
and uloq
specified
values for lower/upper limit of quantification. Logicals for blq
and alq
are returned that indicate whether the DV value lies below/above limit
of quantification.
See Also
observed
simulated
stratify
predcorrect
binning
binless
vpcstats
Examples
require(magrittr)
vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV) %>%
censoring(blq=(DV < 50), lloq=50) %>%
binning(bin = "pam", nbins = 5) %>%
vpcstats()
#Using LLOQ variable in data with different values of LLOQ by Study:
obs_data$LLOQ <- obs_data[, ifelse(STUDY == "Study A", 50, 25)]
vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV) %>%
censoring(blq=(DV < LLOQ), lloq=LLOQ) %>%
stratify(~ STUDY) %>%
binning(bin = "kmeans", nbins = 4) %>%
vpcstats()
Perform a consistency check on observed and simulated data
Description
This function performs a simple consistency check on an observed and simulated dataset to make sure they are consistent with respect to ordering as required by the other functions used in the VPC calculation.
Usage
check_order(obs, sim, tol = 1e-05)
Arguments
obs , sim |
A 'data.frame' with 2 columns (see Details). |
tol |
A tolerance for comparing time values. |
Details
The consistency check is performed by comparing a combination of unique
subject identifier (ID) and time. Both data.frame
objects must be given with
those in positions 1 and 2, respectively.
Value
The number of replicates contained in 'sim'.
See Also
Examples
require(data.table)
check_order(obs_data[, .(ID, TIME)], sim_data[, .(ID, TIME)])
Perform a Visual Predictive Check (VPC) computation
Description
These functions work together to calculate the statistics that are plotted in a VPC. They would typically be chained together using the "pipe" operator (see Examples).
Arguments
o |
A |
... |
Additional arguments. |
Remove prediction correction for Visual Predictive Check (VPC)
Description
Optional function to use indicating no pred correction for VPC.
Usage
nopredcorrect(o, ...)
## S3 method for class 'tidyvpcobj'
nopredcorrect(o, ...)
Arguments
o |
A |
... |
Other arguments to include. |
Normalized Prediction Distribution Errors
Description
Normalized Prediction Distribution Errors
Usage
npde(o, ...)
## S3 method for class 'tidyvpcobj'
npde(o, id, data = o$data, smooth = FALSE, ...)
Arguments
o |
A |
... |
Additional arguments. |
id |
A vector of IDs. Used to associate observations ( |
data |
A |
smooth |
Should a uniform random perturbation be used to smooth the pd/pde values? |
References
Brendel, K., Comets, E., Laffont, C., Laveille, C. & Mentrée, F. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm. Res. (2006) 23(9), 2036–2049.
Nguyen, T.H.T., et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacometrics Syst. Pharmacol. (2017) 6(2), 87–109; doi:10.1002/psp4.12161.
Examples
require(magrittr)
require(ggplot2)
obs <- obs_data[MDV==0]
sim <- sim_data[MDV==0]
npde <- observed(obs, x=NULL, y=DV) %>%
simulated(sim, y=DV) %>%
npde(id=ID)
vpc <- observed(npde$npdeobs, x=epred, y=npde) %>%
simulated(npde$npdesim, y=npde) %>%
binning("eqcut", nbins=10) %>%
vpcstats()
plot(vpc) +
labs(x="Simulation-based Population Prediction", y="Normalized Prediction Distribution Error")
Example observed data with categorical DV
Description
An observed dataset with 3 levels of categorical DV.
Usage
obs_cat_data
Format
A data frame with 4014 rows and 4 variables:
- PID_code
Subject identifier
- agemonths
Time
- zlencat
Categorical DV with the 3 levels
- Country_ID_code
Country code for stratification
Source
Certara University
Example observed data with continuous DV
Description
An observed dataset from a hypothetical PK model, altered to include NTIME, GROUP, GENDER.
Usage
obs_data
Format
A data.table with 600 rows and 7 variables:
- ID
Subject identifier
- TIME
Time
- DV
Concentration of drug
- AMT
Amount of dosage initially administered at DV = 0, TIME = 0
- DOSE
Dosage amount
- MDV
Dummy indicating missing dependent variable value
- NTIME
Nominal Time
- GENDER
Character variable indicating subject's gender ("M", "F")
- STUDY
Character variable indicating study type ("Study A", "Study B")
Source
Specify observed dataset and variables for VPC
Description
The observed function is the first function in the vpc piping chain and is
used for specifying observed data and variables for VPC. Note: Observed data
must not contain missing DV and may require filtering MDV == 0
before
generating VPC. Also observed data must be ordered by: Subject (ID), IVAR
(Time)
Usage
observed(o, ...)
## S3 method for class 'data.frame'
observed(
o,
x,
yobs,
pred = NULL,
blq = NULL,
lloq = -Inf,
alq = NULL,
uloq = Inf,
...
)
Arguments
o |
A |
... |
Other arguments. |
x |
Numeric x-variable, typically named TIME. |
yobs |
Numeric y-variable, typically named DV. |
pred |
Population prediction variable, typically named PRED. |
blq |
Logical variable indicating below limit of quantification. |
lloq |
Number or numeric variable in data indicating the lower limit of quantification. |
alq |
Logical variable indicating above limit of quantification . |
uloq |
Number or numeric variable in data indicating the upper limit of quantification. |
Value
A tidyvpcobj
containing both original data and observed data
formatted with x
and y
variables as specified in function.
Resulting data is of class data.frame
and data.table
.
See Also
simulated
censoring
stratify
predcorrect
binning
binless
vpcstats
Examples
obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]
vpc <- observed(obs_data, x=TIME, y=DV)
Plot a tidyvpcobj
Description
Use ggplot2 graphics to plot and customize the appearance of VPC.
Usage
## S3 method for class 'tidyvpcobj'
plot(
x,
facet = FALSE,
show.points = TRUE,
show.boundaries = TRUE,
show.stats = !is.null(x$stats),
show.binning = isFALSE(show.stats),
xlab = NULL,
ylab = NULL,
color = c("red", "blue", "red"),
linetype = c("dotted", "solid", "dashed"),
point.alpha = 0.4,
point.size = 1,
point.shape = "circle-fill",
point.stroke = 1,
ribbon.alpha = 0.1,
legend.position = "top",
facet.scales = "free",
custom.theme = NULL,
censoring.type = c("none", "both", "blq", "alq"),
censoring.output = c("grid", "list"),
...
)
Arguments
x |
A |
facet |
Set to |
show.points |
Should the observed data points be plotted? |
show.boundaries |
Should the bin boundary be displayed? |
show.stats |
Should the VPC stats be displayed? |
show.binning |
Should the binning be displayed by coloring the observed data points by bin? |
xlab |
A character label for the x-axis. |
ylab |
A character label for the y-axis. |
color |
A character vector of colors for the percentiles, from low to high. |
linetype |
A character vector of line type for the percentiles, from low to high. |
point.alpha |
Numeric value specifying transparency of points. |
point.size |
Numeric value specifying size of point. |
point.shape |
Character one of |
point.stroke |
Numeric value specifying size of point stroke. |
ribbon.alpha |
Numeric value specifying transparency of ribbon. |
legend.position |
A character string specifying the position of the legend. Options are
|
facet.scales |
A character string specifying the |
custom.theme |
A custom ggplot2 theme supplied either as a character string, function, or object of class |
censoring.type |
A character string specifying additional blq/alq plots to include. Only applicable if
|
censoring.output |
A character string specifying whether to return percentage of blq/alq plots as an
arranged |
... |
Additional arguments for |
Value
A ggplot
object.
See Also
ggplot
Prediction corrected Visual Predictive Check (pcVPC)
Description
Specify prediction variable for pcVPC.
Usage
predcorrect(o, ...)
## S3 method for class 'tidyvpcobj'
predcorrect(o, pred, data = o$data, ..., log = FALSE, varcorr = FALSE)
Arguments
o |
A 'tidyvpcobj'. |
... |
Other arguments to include. |
pred |
Prediction variable in observed data. |
data |
Observed data supplied in 'observed()' function. |
log |
Logical indicating whether DV was modeled in logarithmic scale. |
varcorr |
Logical indicating whether variability correction should be applied for prediction corrected dependent variable |
Value
Updates 'tidyvpcobj' with required information to perform prediction correction, which includes the 'predcor' logical indicating whether prediction corrected VPC is to be performed, the 'predcor.log' logical indicating whether the DV is on a log-scale, the 'varcorr' logical indicating whether variability correction for prediction corrected dependent variable is applied and the 'pred' prediction column from the original data. Both 'obs' and 'sim' data tables in the returned 'tidyvpcobj' object have additional 'ypc' column with the results of prediction correction and 'ypcvc' column if variability correction is requested.
See Also
observed
simulated
censoring
stratify
binning
binless
vpcstats
Examples
require(magrittr)
obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]
# Add PRED variable to observed data from first replicate of
# simulated data
obs_data$PRED <- sim_data[REP == 1, PRED]
vpc <- observed(obs_data, x=TIME, yobs=DV) %>%
simulated(sim_data, ysim=DV) %>%
binning(bin = NTIME) %>%
predcorrect(pred=PRED, varcorr = TRUE) %>%
vpcstats()
# For binless loess prediction corrected, use predcorrect() before
# binless() and set loess.ypc = TRUE
vpc <- observed(obs_data, x=TIME, yobs=DV) %>%
simulated(sim_data, ysim=DV) %>%
predcorrect(pred=PRED) %>%
binless() %>%
vpcstats()
Print a tidyvpcobj
Description
Print generic used to return information about VPC.
Usage
## S3 method for class 'tidyvpcobj'
print(x, ...)
Arguments
x |
An |
... |
Further arguments can be specified but are ignored. |
Value
Returns x
invisibly.
Example simulated data with categorical DV
Description
A simulated dataset with the 3 levels of categorical DV across 100 replicates.
Usage
sim_cat_data
Format
A data frame with 401400 rows and 4 variables:
- PID_code
Subject identifier
- IVAR
Time
- DV
Categorical DV with 3 levels
- Replicate
Replicate num for simulation
Source
Certara University
Example simulated data with continuous DV
Description
A simulated dataset from a hypothetical PK model with 100 replicates.
Usage
sim_data
Format
A data.table with 60000 rows and 10 variables:
- ID
Subject identifier
- REP
Replicate num for simulation
- TIME
Time
- DV
Concentration of drug
- IPRED
Individual prediction variable
- PRED
Population prediction variable
- AMT
Amount of dosage initially administered at DV = 0, TIME = 0
- DOSE
Dosage amount
- MDV
Dummy indicating missing dependent variable value
- NTIME
Nominal Time
Source
Specify simulated dataset and variables for VPC
Description
The simulated function is used for specifying simulated input data and
variables for VPC. Note: Simulated data must not contain missing DV and may
require filtering MDV == 0
before generating VPC. Simulated data must
be ordered by: Replicate, Subject (ID), IVAR (Time).
Usage
simulated(o, ...)
## S3 method for class 'tidyvpcobj'
simulated(o, data, ysim, ..., xsim)
Arguments
o |
A |
... |
Other arguments. |
data |
A |
ysim |
Numeric y-variable, typically named DV. |
xsim |
Numeric x-variable, typically named TIME. |
Value
A tidyvpcobj
containing simulated dataset sim
formatted with columns x
, y
, and repl
, which indicates the replicate number.
The column x
is used from the observed()
function. Resulting dataset is of class data.frame
and data.table
.
See Also
observed
censoring
stratify
predcorrect
binning
binless
vpcstats
Examples
require(magrittr)
vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV)
Stratification for Visual Predictive Check (VPC)
Description
Use to specify stratification variables for VPC.
Usage
stratify(o, ...)
## S3 method for class 'tidyvpcobj'
stratify(o, formula, data = o$data, ...)
Arguments
o |
A |
... |
Other arguments to include. |
formula |
Formula for stratification. |
data |
Observed data supplied in |
Value
Returns updated tidyvpcobj
with stratification formula, stratification column(s), and strat.split datasets, which
is obs
split by unique levels of stratification variable(s). Resulting datasets are of class object data.frame
and data.table
.
See Also
observed
simulated
censoring
predcorrect
binning
binless
vpcstats
Examples
require(magrittr)
vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV) %>%
stratify(~ GENDER) %>%
binning(NTIME) %>%
vpcstats()
# Example with 2-way stratification by GENDER and STUDY.
vpc <- vpc %>%
stratify(~ GENDER + STUDY) %>%
binning(bin = "centers", centers = c(1,3,5,7,10)) %>%
vpcstats()
Compute VPC statistics
Description
Compute prediction interval statistics for VPC.
Usage
vpcstats(o, ...)
## S3 method for class 'tidyvpcobj'
vpcstats(
o,
vpc.type = c("continuous", "categorical"),
qpred = c(0.05, 0.5, 0.95),
...,
conf.level = 0.95,
quantile.type = 7
)
Arguments
o |
A |
... |
Other arguments to include. |
vpc.type |
Character specifying type of VPC (e.g., |
qpred |
Numeric vector of length 3 specifying quantile prediction interval. Only applicable for |
conf.level |
Numeric specifying confidence level. |
quantile.type |
Numeric indicating quantile type. See |
Value
Updates tidyvpcobj
with stats
data.table
object, which contains the following columns:
-
bin
: Resulting bin value as specified inbinning()
function -
xbin
: Midpoint x-value of the observed data points in the bin as specified inxbin
argument ofbinning()
function -
qname
: Quantiles specified inqpred
. Only returned ifvpc.type = "continuous"
-
pname
: Categorical probability names. Only returned ifvpc.type = "categorical"
-
y
: Observed y value for the specified quantile -
lo
: Lower bound of specified confidence interval for y value in simulated data -
md
: Median y value in simulated data -
hi
: Upper bound of specified confidence interval for y value in simulated data
See Also
observed
simulated
censoring
stratify
binning
binless
predcorrect