## ----setup, include = FALSE---------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- eval= FALSE-------------------------------------------------------- # install.packages("usfertilizer") ## ---- message=FALSE, warning=FALSE--------------------------------------- require(usfertilizer) require(tidyverse) data("us_fertilizer_county") ## ------------------------------------------------------------------------ glimpse(us_fertilizer_county) ## ------------------------------------------------------------------------ # plot the top 10 nitrogen application in year 2008. # Reorder to make the plot more cleanner. year_plot = 2008 us_fertilizer_county %>% filter(Nutrient == "N" & Year == year_plot & Input.Type == "Fertilizer" ) %>% top_n(10, Quantity) %>% ggplot(aes(x=reorder(paste(County,State, sep = ","), Quantity), Quantity, fill = Quantity))+ scale_fill_gradient(low = "blue", high = "darkblue")+ geom_col()+ ggtitle(paste("Top 10 counties with most fertilizer application in the year of", year_plot)) + scale_y_continuous(name = "Nitrogen from commecial fertilization (kg)")+ scale_x_discrete(name = "Counties")+ coord_flip()+ theme_bw() ## ------------------------------------------------------------------------ # plot the top 10 states with P application in year 1980. # Reorder to make the plot more cleanner. year_plot = 1980 us_fertilizer_county %>% filter(Nutrient == "P" & Year == 1980 & Input.Type == "Fertilizer") %>% group_by(State) %>% summarise(p_application = sum(Quantity)) %>% as.data.frame() %>% top_n(10, p_application) %>% ggplot(aes(x=reorder(State, p_application), p_application))+ scale_fill_gradient(low = "blue", high = "darkblue")+ geom_col()+ ggtitle(paste("Top 10 States with most Phosphrus application in the year of", year_plot)) + scale_y_continuous(name = "Phosphrus from commecial fertilizer (kg)")+ scale_x_discrete(name = "States")+ theme_bw()+ coord_flip() ## ---- message=F, warning=F----------------------------------------------- year_plot = seq(1945, 2010, 1) states = c("NC","SC") us_fertilizer_county %>% filter(State %in% states & Year %in% year_plot & Farm.Type == "farm" & Input.Type == "Fertilizer") %>% group_by(State, Year, Nutrient) %>% summarise(Quantity = sum(Quantity, na.rm = T)) %>% ggplot(aes(x = as.numeric(Year), y = Quantity, color=State)) + geom_point() + geom_line()+ scale_x_continuous(name = "Year")+ scale_y_continuous(name = "Nutrient input quantity (kg)")+ facet_wrap(~Nutrient, scales = "free", ncol = 2)+ ggtitle("Estimated nutrient inputs into arable lands by commercial fertilizer\nfrom 1945 to 2010 in Carolinas")+ theme_bw() ## ------------------------------------------------------------------------ us_fertilizer_county %>% filter(State %in% states & Year %in% year_plot & Farm.Type == "farm" & Nutrient == "N") %>% group_by(State, Year, Input.Type) %>% summarise(Quantity = sum(Quantity, na.rm = T)) %>% ggplot(aes(x = as.numeric(Year), y = Quantity, color=Input.Type)) + geom_point() + geom_line()+ scale_x_continuous(name = "Year")+ scale_y_continuous(name = "Nutrient input quantity (kg)")+ facet_wrap(~State, scales = "free", ncol = 2)+ ggtitle("Estimated nitrogen inputs into arable lands by commercial fertilizer and manure\nfrom 1945 to 2012 in Carolinas")+ theme_bw()