Package 'wsMed'

December 11, 2025

Title Within-Subject Mediation Analysis Using Structural Equation Modeling

Version 1.0.2

Description Within-subject mediation analysis using structural equation modeling.

Examine how changes in an outcome variable between two conditions are mediated through one or more variables. Supports within-subject mediation analysis using the 'lavaan' package by Rosseel (2012) <doi:10.18637/jss.v048.i02>, and extends Monte Carlo confidence interval estimation to missing data scenarios using the 'semmcci' package by Pesigan and Cheung (2023) <doi:10.3758/s13428-023-02114-4>.

License GPL (>= 3)

Depends R (>= 4.1.0)

Encoding UTF-8

RoxygenNote 7.3.3

Suggests rmarkdown, devtools, testthat

Config/testthat/edition 3

Imports knitr, lavaan, semmcci, mice, semboottools, MASS, rlang, dplyr, ggplot2, methods, stats

VignetteBuilder knitr

LazyData true

URL https://yangzhen1999.github.io/wsMed/

BugReports https://github.com/Yangzhen1999/wsMed/issues

NeedsCompilation no

Author Wendie Yang [aut, cre] (ORCID: https://orcid.org/0009-0000-8388-6481), Shu Fai Cheung [aut] (ORCID: https://orcid.org/0000-0002-9871-9448)

Maintainer Wendie Yang <1581075494q@gmail.com>

Repository CRAN

Date/Publication 2025-12-11 13:30:02 UTC

2 **GenerateModelCN**

Contents

GenerateModelCN		 2
$Generate Model CP\ .$		 4
Generate Model P .		 5
$Generate Model PC \; .$		 7
ImputeData		 9
MCMI2		 10
plot_moderation_cui	rve	 12
PrepareData		 13
PrepareMissingData		 16
print.wsMed		 18
printGM		 20
wsMed		 21
		24
ateModelCN	Generate Chained Mediation Model	

Description

GenerateModelCN

Index

Dynamically generates a structural equation modeling (SEM) syntax for chained mediation analysis based on the prepared dataset. The function computes regression equations for mediators and the outcome variable, indirect effects along multi-step mediation paths, total effects, contrasts between indirect effects, and coefficients in different conditions.

Usage

GenerateModelCN(prepared_data, MP = character(0))

Arguments

prepared_data

A data frame returned by PrepareData(), containing the processed withinsubject mediator and outcome variables. The data frame must include columns for difference scores (Mdiff) and average scores (Mavg) of mediators, as well as the outcome difference score (Ydiff).

MP

A character vector specifying which paths are moderated by variable(s) W. Valid entries include: - "a2", "a3", ...: moderation on the a paths (W \rightarrow Mdiff), for mediators beyond M1. - "b2", "b3", ...: moderation on the b paths (Mdiff \times $W \rightarrow Ydiff$). - "b_1_2", "b_2_3", ...: moderation on cross-paths from one mediator to the next (e.g., M1 \rightarrow M2). - "d2", "d3", ...: moderation on the d paths (Mavg \times W \rightarrow Ydiff). - "d_1_2", "d_2_3", ...: moderation on cross-paths from one Mavg to the next Mdiff. - "cp": moderation on the direct effect from X to Y (i.e., $W \rightarrow Y$ diff).

The function detects and inserts the correct interaction terms (e.g., \code{int_M2d

GenerateModelCN 3

Details

This function is used to construct SEM models for chained mediation analysis. It automatically parses variable names from the prepared dataset and dynamically creates the necessary model syntax, including:

- Outcome regression: Defines the relationship between the difference scores of the outcome (Ydiff) and the mediators (Mdiff) as well as their average scores (Mavg).
- **Mediator regressions**: Defines the sequential regression models for each mediator's difference score, incorporating prior mediators as predictors.
- **Indirect effects**: Computes the indirect effects along all possible multi-step mediation paths using the product of path coefficients.
- **Total indirect effect**: Calculates the sum of all indirect effects from the chained mediation paths.
- Total effect: Combines the direct effect (cp) and the total indirect effect.
- **Contrasts of indirect effects**: Optionally calculates the pairwise contrasts between the indirect effects for different mediation paths.
- Coefficients in different 'X' conditions: Calculates path coefficients in different X conditions to observe the moderation effect of X.

This model is suitable for chained mediation designs where mediators influence each other in a sequential manner, forming multi-step mediation paths.

Value

A character string representing the SEM model syntax for the specified chained mediation analysis.

See Also

```
PrepareData(), wsMed(), GenerateModelP()
```

```
# Example prepared data
prepared_data <- data.frame(
   M1diff = rnorm(100),
   M2diff = rnorm(100),
   M3diff = rnorm(100),
   M1avg = rnorm(100),
   M2avg = rnorm(100),
   M3avg = rnorm(100),
   Ydiff = rnorm(100)
)

# Generate SEM model syntax
sem_model <- GenerateModelCN(prepared_data)
cat(sem_model)</pre>
```

4 GenerateModelCP

GenerateModelCP

Generate Combined Parallel and Chained Mediation Model

Description

Dynamically generates a structural equation modeling (SEM) syntax for combined parallel and chained mediation analysis based on the prepared dataset. The function computes regression equations for mediators and the outcome variable, indirect effects for both parallel and chained mediation paths, total effects, contrasts between indirect effects, and coefficients in different X conditions.

Usage

GenerateModelCP(prepared_data, MP = character(0))

Arguments

prepared_data

A data frame returned by PrepareData(), containing the processed withinsubject mediator and outcome variables. The data frame must include columns for difference scores (Mdiff) and average scores (Mavg) of mediators, as well as the outcome difference score (Ydiff).

MP

A character vector specifying which paths are moderated by variable(s) W. Acceptable values include: - "a2", "a3", ...: moderation on the a paths of parallel mediators (W \rightarrow Mdiff). - "b2", "b3", ...: moderation on the b paths of parallel mediators (Mdiff \times W \rightarrow Ydiff). - "b_1_2", "b_1_3", ...: moderation on the paths from the chain mediator to parallel mediators. - "d_1_2", "d_1_3", ...: moderation on the paths from the chain mediator's Mavg to parallel mediators. - "cp": moderation on the direct effect from X to Y (i.e., W \rightarrow Ydiff).

Each entry triggers inclusion of W's main effect or interaction terms (e.g., \code{i

Details

This function is used to construct SEM models that combine parallel and chained mediation analysis. It automatically parses variable names from the prepared dataset and dynamically creates the necessary model syntax, including:

- Outcome regression: Defines the relationship between the difference scores of the outcome (Ydiff), the chained mediator (M1diff), and the parallel mediators (M2diff, M3diff, etc.).
- **Mediator regressions**: Defines the sequential regression models for the chained mediator and each parallel mediator.
- **Indirect effects**: Computes the indirect effects for both chained and parallel mediation paths, including multi-step indirect effects involving both chained and parallel mediators.
- **Total indirect effect**: Calculates the sum of all indirect effects from chained and parallel mediation paths.
- **Total effect**: Combines the direct effect (cp) and the total indirect effect.
- **Contrasts of indirect effects**: Optionally calculates the pairwise contrasts between the indirect effects for different mediation paths.

GenerateModelP 5

• Coefficients in different 'X' conditions: Calculates path coefficients in different X conditions to observe the moderation effect of X.

This model is suitable for designs where mediators include both a sequential chain (chained mediation) and independent parallel mediators.

Value

A character string representing the SEM model syntax for the specified combined parallel and chained mediation analysis.

See Also

```
PrepareData(), wsMed(), GenerateModelP(), GenerateModelCN()
```

Examples

```
# Example prepared data
prepared_data <- data.frame(
   M1diff = rnorm(100),
   M2diff = rnorm(100),
   M3diff = rnorm(100),
   M1avg = rnorm(100),
   M2avg = rnorm(100),
   M3avg = rnorm(100),
   Ydiff = rnorm(100)
)

# Generate SEM model syntax
sem_model <- GenerateModelCP(prepared_data)
cat(sem_model)</pre>
```

GenerateModelP

Generate Parallel Mediation Model

Description

Dynamically generates a structural equation modeling (SEM) syntax for parallel mediation analysis based on the prepared dataset. The function computes regression equations for mediators and the outcome variable, indirect effects, total effects, contrasts between indirect effect, and .

Usage

```
GenerateModelP(prepared_data, MP = character(0))
```

6 GenerateModelP

Arguments

prepared_data

A data frame returned by PrepareData(), containing the processed withinsubject mediator and outcome variables. The data frame must include columns for difference scores (Mdiff) and average scores (Mavg) of mediators, as well as the outcome difference score (Ydiff).

MP

A character vector specifying which paths are moderated by variable(s) W. Valid values include: - "a1", "a2", ...: moderation on the a paths (W \rightarrow Mdiff). - "b1", "b2", ...: moderation on the b paths (Mdiff \times W \rightarrow Ydiff). - "d1", "d2", ...: moderation on the d paths (Mavg \times W \rightarrow Ydiff). - "cp": moderation on the direct effect from X to Y (i.e., W \rightarrow Ydiff).

This argument controls which interaction terms (e.g., \code{int_Mdiff_W}, \code{in added to the corresponding regression equations.

Details

This function is used to construct SEM models for parallel mediation analysis. It automatically parses variable names from the prepared dataset and dynamically creates the necessary model syntax, including:

- Outcome regression: Defines the relationship between the difference scores of the outcome (Ydiff) and the mediators (Mdiff) as well as their average scores (Mavg).
- Mediator regressions: Defines the intercept models for each mediator's difference score.
- **Indirect effects**: Computes the indirect effects for each mediator using the product of path coefficients (e.g., a * b).
- Total indirect effect: Calculates the sum of all indirect effects.
- Total effect: Combines the direct effect (cp) and the total indirect effect.
- **Contrasts of indirect effects**: Optionally calculates the pairwise contrasts between the indirect effects when multiple mediators are present.
- **coefficients in different 'X' conditions**: Calculates path coefficients in different X conditions to observe the moderation effect of 'X'.

This model is suitable for parallel mediation designs where multiple mediators act independently.

Value

A character string representing the SEM model syntax for the specified parallel mediation analysis.

See Also

```
PrepareData(), wsMed(), GenerateModelCN()
```

```
# Example prepared data
prepared_data <- data.frame(
   M1diff = rnorm(100),
   M2diff = rnorm(100),</pre>
```

GenerateModelPC 7

```
M1avg = rnorm(100),
M2avg = rnorm(100),
Ydiff = rnorm(100)
)

# Generate SEM model syntax
sem_model <- GenerateModelP(prepared_data)
cat(sem_model)</pre>
```

GenerateModelPC

Generate Parallel and Chained Mediation Model

Description

Dynamically generates a structural equation modeling (SEM) syntax for mediation analysis that integrates both parallel and chained mediators. Unlike the Combined Parallel and Chained mediation model (GenerateModelCP), this function assumes that the chained mediator receives inputs from the parallel mediators and directly influences the outcome variable, emphasizing a downstream role for the chained mediator.

Usage

```
GenerateModelPC(prepared_data, MP = character(0))
```

Arguments

prepared_data

A data frame returned by PrepareData(), containing the processed withinsubject mediator and outcome variables. The data frame must include columns for difference scores (Mdiff) and average scores (Mavg) of mediators, as well as the outcome difference score (Ydiff).

MP

A character vector specifying which paths are moderated by variable(s) W. Acceptable values include: - "a2", "a3", ...: moderation on the a paths (W \rightarrow Mdiff). - "b2", "b3", ...: moderation on the b paths (Mdiff \times W \rightarrow Ydiff). - "b_2_1", "b_3_1", ...: moderation on the cross-paths from parallel mediators to the chain mediator (e.g., M2 \rightarrow M1). - "d_2_1", "d_3_1", ...: moderation on the paths from parallel mediators' centered means to M1. - "cp": moderation on the direct effect of X on Y (i.e., W \rightarrow Ydiff).

This argument controls which interaction terms (e.g., \code{int_Mdiff_W}, \code{in the regression equations. Variable names are automatically matched using the nam \code{"int_predictor>_W<index>"}.

Details

This function is designed to build SEM models that integrate parallel and chained mediation structures. It automatically identifies variable names from the prepared dataset and generates the necessary model syntax, including:

8 GenerateModelPC

• Outcome regression: Defines the relationship between the difference scores of the outcome (Ydiff), the chained mediator (M1diff), and the parallel mediators (M2diff, M3diff, etc.).

- **Mediator regressions**: Constructs separate regression models for the parallel mediators and the chained mediator. The chained mediator incorporates predictors from all parallel mediators.
- Indirect effects: Computes indirect effects for:
 - Parallel mediators (M2diff, M3diff, etc.) directly influencing the outcome.
 - The chained mediator (M1diff) directly influencing the outcome.
 - Combined paths where parallel mediators influence the chained mediator, which in turn influences the outcome.
- **Total indirect effect**: Summarizes all indirect effects from parallel and chained mediation paths.
- Total effect: Combines the direct effect (cp) and the total indirect effect.
- Contrasts of indirect effects: Optionally computes pairwise contrasts between indirect effects for different mediation paths.
- Coefficients in different 'X' conditions: Computes path coefficients under different X conditions to analyze moderation effects.

This model is suitable for designs where mediators include both independent parallel paths and sequential chained paths, providing a comprehensive mediation analysis framework.

Value

A character string representing the SEM model syntax for the specified parallel and chained mediation analysis.

See Also

```
PrepareData(), wsMed(), GenerateModelP(), GenerateModelCN()
```

```
# Example prepared data
prepared_data <- data.frame(
   M1diff = rnorm(100),
   M2diff = rnorm(100),
   M3diff = rnorm(100),
   M1avg = rnorm(100),
   M2avg = rnorm(100),
   M3avg = rnorm(100),
   Ydiff = rnorm(100)
)

# Generate SEM model syntax
sem_model <- GenerateModelPC(prepared_data)
cat(sem_model)</pre>
```

ImputeData 9

_			_	
Ιm	n	+ ^	Γ	+ ~
1 1111		1 -	וו	11 1

Impute Missing Data Using Multiple Imputation

Description

The ImputeData function performs multiple imputation on a data frame with missing values using the mice package. It handles missing data by creating multiple imputed datasets based on a specified imputation method and returns a list of completed data frames.

Usage

```
ImputeData(
  data_missing,
  m = 5,
  method = "pmm",
  seed = 123,
  predictorMatrix = NULL
)
```

Arguments

data_missing A data frame containing missing values to be imputed. The function replaces

values coded as -999 with NA before imputation.

m An integer specifying the number of imputed datasets to generate.

method A character string specifying the imputation method. Default is "pmm" (predic-

tive mean matching).

seed An integer for setting the random seed to ensure reproducibility. Default is 123.

predictorMatrix

An optional matrix specifying the predictor structure for the imputation model. Default is NULL, meaning that the function will use the default predictor matrix

created by mice.

Details

This function replaces specified missing value placeholders (e.g., -999) with NA, and then applies the multiple imputation by chained equations (MICE) procedure to generate multiple imputed datasets. It supports flexible imputation methods and allows for specifying a custom predictor matrix.

Value

A list of m imputed data frames.

Author(s)

Wendie Yang, Shufai Cheung

10 MCMI2

Examples

```
# Example data with missing values
data <- data.frame(
   M1 = c(rnorm(99), rep(NA, 1)),
   M2 = c(rnorm(99), rep(NA, 1)),
   Y1 = rnorm(100),
   Y2 = rnorm(100)
)
# Perform multiple imputation
imputed_data_list <- ImputeData(data, m = 5)
# Display the first imputed dataset
head(imputed_data_list[[1]])</pre>
```

MCMI2

Monte Carlo Confidence Intervals for Multiple Imputation SEM Models

Description

Computes Monte Carlo confidence intervals (MCCI) for structural equation models (SEM) fitted to multiple imputed datasets. This function integrates SEM fitting across imputed datasets, pools the results, and generates confidence intervals through Monte Carlo sampling.

Usage

```
MCMI2(
sem_model,
imputations,
R = 20000L,
alpha = c(0.001, 0.01, 0.05),
decomposition = "eigen",
pd = TRUE,
tol = 1e-06,
seed = NULL,
estimator = "ML",
se = "standard",
missing = "listwise"
)
```

Arguments

sem_model A character string specifying the SEM model syntax.

imputations A list of data frames, where each data frame represents an imputed dataset.

R An integer specifying the number of Monte Carlo samples. Default is 20000L.

alpha A numeric vector specifying significance levels for the confidence intervals. Default is 20000L.

fault is c(0.001, 0.01, 0.05).

MCMI2 11

decomposition	A character string specifying the decomposition method for the covariance matrix. Default is "eigen". Options include "chol", "eigen", or "svd".
pd	A logical value indicating whether to ensure positive definiteness of the covariance matrix. Default is TRUE.
tol	A numeric value specifying the tolerance for positive definiteness checks. Default is 1e-06.
seed	An optional integer specifying the random seed for reproducibility. Default is \ensuremath{NULL} .
estimator	A character string specifying the estimator for SEM fitting. Default is "ML" (Maximum Likelihood).
se	A character string specifying the type of standard errors to compute. Default is "standard".
missing	A character string specifying the method for handling missing data in SEM fitting. Default is "listwise".

Details

This function is designed for SEM models that require multiple imputation to handle missing data. It performs the following steps:

- **SEM Fitting**: Fits the specified SEM model to each imputed dataset using lavaan::sem().
- **Pooling Results**: Combines parameter estimates and covariance matrices across imputations using Rubin's rules.
- **Monte Carlo Sampling**: Generates Monte Carlo samples based on the pooled estimates and covariance matrices, and calculates confidence intervals for model parameters.

This function supports custom estimators, handling of missing data, and precision adjustments for Monte Carlo sampling. It is particularly useful for mediation analysis or complex SEM models where missing data are addressed using multiple imputation.

Value

An object of class semmcci containing:

- call: The matched function call.
- args: A list of input arguments.
- the tahat: The pooled parameter estimates.
- thetahatstar: Monte Carlo samples for parameter estimates.
- fun: The name of the function ("MCMI2").

See Also

```
lavaan::sem(), semmcci::MC(), semmcci::MCStd()
```

Examples

```
# Example SEM model
sem_model <- "
 Ydiff \sim b1 * M1diff + cp * 1
 M1diff \sim a1 * 1
 indirect := a1 * b1
 total := cp + indirect
# Example imputed datasets
imputations <- list(</pre>
 data.frame(M1diff = rnorm(100), Ydiff = rnorm(100)),
 data.frame(M1diff = rnorm(100), Ydiff = rnorm(100))
)
# Compute Monte Carlo confidence intervals
result <- MCMI2(
 sem_model = sem_model,
 imputations = imputations,
 R = 1000,
 alpha = c(0.05, 0.01),
 seed = 123
```

plot_moderation_curve Plot moderation curves with Johnson-Neyman highlights

Description

plot_moderation_curve() visualises how an indirect effect (theta_curve) or a path coefficient (path_curve) varies along a continuous moderator *W*.

The routine

- extracts the requested record (path_name) from result\$moderation, preferring theta_curve
 when it is available in both curves;
- draws the conditional effect (Estimate) against the raw moderator grid (W_raw);
- overlays the Monte-Carlo confidence band (CI.LL, CI.UL) and finds every Johnson–Neyman segment whose 95 % CI excludes zero (CI.LL * CI.UL > 0);
- shades these significant regions and annotates each with its start / end percentiles (for example, "sig 12.5%-38.3%").

Visual elements

- **Red ribbon** overall 95 % confidence band (ns_fill);
- **Green ribbon** significant Johnson–Neyman intervals (sig_fill);
- **Solid line** point estimate;
- **Dashed h-line** zero reference;
- Dashed v-lines J–N bounds.

PrepareData 13

Usage

```
plot_moderation_curve(
  result,
  path_name,
  title = NULL,
  x_label = "Moderator (W)",
  y_label = "Estimate",
  ns_fill = "#FEE0D2",
  sig_fill = "#C7E9C0",
  alpha_ci = 0.35,
  alpha_sig = 0.35,
  base_size = 14
)
```

Arguments

Value

A ggplot object (add layers or save with ggsave()).

PrepareData

Prepare Data for Two-Condition Within-Subject Mediation (WsMed)

Description

PrepareData() transforms raw pre/post data into the set of variables required by the **WsMed** workflow. It handles *mediators*, *outcome*, *within-subject controls*, *between-subject controls*, *moderators*, and all necessary **interaction terms**, while automatically centering / dummy-coding variables as needed.

14 PrepareData

Usage

```
PrepareData(
  data,
 M_C1,
 M_C2,
 Y_C1,
  Y_C2,
 C_C1 = NULL,
 C_C2 = NULL,
 C = NULL,
 C_type = NULL,
 W = NULL
 W_{type} = NULL,
  center_W = TRUE,
 keep_W_raw = TRUE,
 keep\_C\_raw = TRUE
)
```

Arguments

data	A data frame with the raw pre/post measures.	
M_C1, M_C2	Character vectors: mediator names at occasion 1 and 2 (equal length).	
Y_C1, Y_C2	Character scalars: outcome names at occasion 1 and 2.	
C_C1, C_C2	Optional character vectors: within-subject control names.	
С	Optional character vector: between-subject control names.	
C_type	Optional vector of the same length as C. Each element is one of "continuous", "categorical", or "auto" (default). Ignored when C = NULL.	
W	Optional character vector: moderator names (one or more).	
W_type	Optional vector of the same length as W. Same coding as C_{type} . Ignored when $W = NULL$.	
center_W	Logical. Whether to center the moderator variable W.	
keep_W_raw, keep_C_raw		
	Logical. If TRUE, keep the original W / C columns in the returned data.	

Details

The function performs the following steps:

- 1. Outcome difference: Ydiff = Y_C2 Y_C1.
- 2. Mediator variables for each pair (M_C1[i], M_C2[i]):
 - Mi_diff = M_C2 M_C1
 - Mi_avg is the mean-centered average of the two occasions.
- 3. Between-subject controls C:
 - Continuous variables are grand-mean centered (Cb1, Cb2, ...).

PrepareData 15

- Categorical variables (binary or multi-level) are expanded into k 1 dummy variables (Cb1_1, Cb2_1, Cb2_2, ...), using the first level as the reference.
- 4. Within-subject controls Cw. difference and centered-average versions (Cw1diff, Cw1avg, ...).
- 5. Moderators W (one or more):
 - Continuous variables are grand-mean centered (W1, W2, ...).
 - Categorical variables are dummy-coded in the same way as C.
- 6. Interaction terms between each moderator column and each mediator column:
 - int_<Mi_diff>_<Wj>, int_<Mi_avg>_<Wj>.
- 7. Two attributes are added to the returned data:
 - "W_info": raw names, dummy names, level mapping
 - "C_info": same structure for between-subject controls.

Row counts are preserved even if input factors contain NA values (model.matrix is called with na.action = na.pass).

Value

A data frame containing at minimum:

- Ydiff
- Mi_diff, Mi_avg for each mediator
- centered or dummy-coded Cb*, Cw*diff, Cw*avg
- centered or dummy-coded W* and all int_* interaction terms

plus the attributes "W_info" and "C_info" described above.

See Also

PrepareMissingData, GenerateModelP, wsMed

```
set.seed(1)
raw <- data.frame(</pre>
 A1 = rnorm(50), A2 = rnorm(50), # mediator 1
 B1 = rnorm(50), B2 = rnorm(50), # mediator 2
 C1 = rnorm(50), C2 = rnorm(50), # outcome
 D1 = rnorm(50), D2 = rnorm(50), # within-subject control
 W_bin = sample(0:1, 50, TRUE), # between-subject binary C
 W_fac3 = factor(sample(c("Low", "Med", "High"), 50, TRUE)) # moderator W
)
prep <- PrepareData(</pre>
 data = raw,
 M_C1 = c("A1", "B1"), M_C2 = c("A2", "B2"),
 Y_C1 = "C1", 	 Y_C2 = "C2",
 C_C1 = "D1",
                    C_C2 = "D2",
      = "W_bin", C_type = "categorical",
```

PrepareMissingData

```
W = "W_fac3", W_type = "categorical"
)
head(prep)
```

PrepareMissingData

Prepare Data with Missing Values for Mediation Analysis

Description

Handles missing values in the dataset through multiple imputation and prepares the imputed datasets for within-subject mediation analysis. The function imputes missing data, processes each imputed dataset, and provides diagnostics for the imputation process.

Usage

```
PrepareMissingData(
 data_missing,
 m = 5,
 method_num = "pmm",
  seed = 123,
 M_C1,
 M_C2
  Y_C1,
  Y_C2,
 C_C1 = NULL
 C_C2 = NULL,
 C = NULL
 C_type = NULL,
 W = NULL
 W_type = NULL,
  center_W = TRUE,
  keep_W_raw = TRUE,
  keep_C_raw = TRUE
)
```

Arguments

data_missing	A data frame containing the raw dataset with missing values.
m	An integer specifying the number of imputations to perform. Default is 5.
method_num	Character; imputation method for numeric variables (for example, "pmm", "norm"). Default is "pmm".
seed	An integer specifying the random seed for reproducibility. Default is 123.
M_C1	A character vector of column names representing mediators at condition 1.
M_C2	A character vector of column names representing mediators at condition 2. Must match the length of M_C1.

PrepareMissingData 17

Y_C1	A character string representing the column name of the outcome variable at condition 1.
Y_C2	A character string representing the column name of the outcome variable at condition 2.
C_C1	Character vector of within-subject control variable names (condition 1).
C_C2	Character vector of within-subject control variable names (condition 2).
С	Character vector of between-subject control variable names.
C_type	Optional vector of the same length as C. Each element is "continuous", "categorical", or "auto" (default). Ignored when $C = NULL$.
W	Optional character vector: moderator names (at most J).
W_type	Optional vector of the same length as W . Same coding as C_{type} . Ignored when $W = NULL$.
center_W	Logical. Whether to center the moderator variable W.
keep_W_raw, kee	p_C_raw
	Logical; keep the original W / C columns in the returned data?

Details

This function is designed to preprocess datasets with missing values for mediation analysis. It performs the following steps:

- Multiple imputation: Uses specified imputation methods (for example, predictive mean matching) to generate m imputed datasets.
- Data preparation: Applies PrepareData to each of the m imputed datasets to calculate difference scores and centered averages for mediators and the outcome variable.
- Imputation diagnostics: Provides summary diagnostics for the imputation process, including information about missing data patterns and convergence.

This function integrates imputation and data preparation, ensuring that the resulting datasets are ready for subsequent mediation analysis.

Value

A list containing:

processed_data_list A list of m data frames, each representing an imputed and processed dataset ready for within-subject mediation analysis.

imputation_summary A summary of the imputation process, including diagnostics and convergence information.

See Also

PrepareData, ImputeData, wsMed

18 print.wsMed

Examples

```
# Example dataset with missing values
data("example_data", package = "wsMed")
set.seed(123)
example_dataN <- mice::ampute(</pre>
  data = example_data,
  prop = 0.1
)$amp
# Prepare the dataset with multiple imputations
prepared_missing_data <- PrepareMissingData(</pre>
  data_missing = example_dataN,
  m = 5,
  M_C1 = c("A2", "B2"),
  M_C2 = c("A1", "B1"),
  Y_C1 = "C2",
  Y_C2 = "C1"
)
# Access processed datasets
processed_data_list <- prepared_missing_data$processed_data_list</pre>
imputation_summary <- prepared_missing_data$imputation_summary</pre>
```

print.wsMed

Print Method for wsMed Objects

Description

Provides a comprehensive summary of results from a wsMed object, including:

- Input and computed variables with sample size.
- Model fit indices, regression paths, and variance estimates.
- Total, direct, and indirect effects with pairwise contrasts.
- Moderation effects and Monte Carlo confidence intervals for raw and standardized estimates (if applicable).
- Diagnostic notes for bootstrapping, imputation, and analysis parameters.

The output is formatted for clarity, ensuring an intuitive presentation of mediation analysis results, including dynamic confidence intervals, moderation keys, and C1-C2 coefficients.

Usage

```
## S3 method for class 'wsMed'
print(x, digits = 3, ...)
```

print.wsMed 19

Arguments

A wsMed object containing the results of within-subject mediation analysis.

digits Numeric. Number of digits to display in the results.

... Additional arguments (not used currently).

Details

This function is specifically designed to display results from the within-subject mediation analysis conducted using the wsMed function. Key features include:

• Variables:

- Shows input variables (M_C1, M_C2, Y_C1, Y_C2) and computed variables like Ydiff, Mdiff, and Mavg.
- Reports the sample size used in the analysis.

• Model Fit Indices:

 Displays SEM fit indices (e.g., Chi-square, CFI, TLI, RMSEA, SRMR) to assess model quality.

• Regression Paths and Variance Estimates:

- Summarizes path coefficients, intercepts, variances, and confidence intervals.

• Effects:

- Reports total, direct, and indirect effects with their significance.
- Highlights pairwise contrasts between indirect effects for mediation paths.

• Moderation Effects:

 Provides moderation results for identified variables with corresponding coefficients and paths.

• Monte Carlo Confidence Intervals:

Includes results for raw and standardized estimates obtained using methods such as MI or FIML.

• Diagnostics:

 Summarizes analysis parameters like bootstrapping, imputation settings, Monte Carlo iterations, and random seeds.

Value

Invisibly returns the input wsMed object for further use.

See Also

wsMed, sem, standardizedSolution_boot_ci

20 printGM

Examples

```
# Perform within-subject mediation analysis
data("example_data", package = "wsMed")
result1 <- wsMed(
   data = example_data,
   M_C1 = c("A1", "B1"),
   M_C2 = c("A2", "B2"),
   Y_C1 = "C1",
   Y_C2 = "C2",
   form = "P",
   Na = "FIML",
   standardized = FALSE,
   alpha = 0.05
)

# Print the results
print(result1)</pre>
```

printGM

Print Formatted SEM Model Syntax

Description

Formats and prints the SEM model syntax generated by GenerateModelCN, GenerateModelCP, GenerateModelP, and GenerateModelPC. It organizes the equations into labeled sections for better readability.

Usage

```
printGM(x, ...)
```

Arguments

x A list or character string containing SEM model syntax. If x is a wsMed() result, it will extract and print the model syntax. If x is a GenerateModel*() result, it will format and print the model.

... Additional arguments (not used).

Value

Invisibly returns the formatted SEM model syntax.

wsMed 21

Examples

```
data(example_data)
head(example_data)
prepared_data <- PrepareData(
   data = example_data,
   M_C1 = c("A1", "B1"),
   M_C2 = c("A2", "B2"),
   Y_C1 = "C1",
   Y_C2 = "C2"
)
sem_model <- GenerateModelPC(prepared_data)
printGM(sem_model)</pre>
```

wsMed

Within-Subject Mediation Analysis (Two-Condition)

Description

wsMed() fits a structural equation model (SEM) for two-condition within-subject mediation. It can handle missing data (DE, FIML, MI) and computes both unstandardized and standardized effects with bootstrap or Monte Carlo confidence intervals.

Usage

```
wsMed(
  data,
 M_C1,
 M_C2,
  Y_C1,
  Y_C2,
 C_C1 = NULL
 C_C2 = NULL
 C = NULL
 C_{type} = NULL,
 W = NULL,
 W_type = NULL,
 MP = NULL
  form = c("P", "CN", "CP", "PC"),
  Na = c("DE", "FIML", "MI"),
  alpha = 0.05,
  mi_args = list(),
  R = 20000L
  bootstrap = 2000,
  boot_ci_type = "perc",
  iseed = 123,
  fixed.x = FALSE,
  ci_method = c("mc", "bootstrap", "both"),
```

22 wsMed

```
MCmethod = NULL,
seed = 123,
standardized = FALSE,
verbose = FALSE
)
```

Arguments

data	A data.frame containing the raw scores.
M_C1, M_C2	Character vectors of mediator names under condition 1 and 2.
Y_C1, Y_C2	Character scalars for the outcome under each condition.
C_C1, C_C2	Character vectors of within-subject covariates (per condition).
С	Character vector of between-subject covariates.
C_type	Character; type of C: "continuous" or "categorical".
W	Character vector of moderators. Default NULL.
W_type	Character; "continuous" or "categorical".
MP	Character vector identifying which regression paths are moderated (for example, "a1", "b $_1$ 2", "cp").
form	Model type: "P", "CN", "CP", or "PC".
Na	Missing-data method: "DE", "FIML", or "MI".
alpha	Numeric vector in (0, 1); two-sided significance levels.
mi_args	List of MI-specific controls:
	m Number of imputations. Default 5.
	method_num Imputation method for mice().
	$\label{lem:decomposition} decomposition\ Covariance-decomposition\ method\ ("eigen","chol","svd").$
	pd Logical; positive-definiteness check.
	tol Tolerance for the positive-definiteness check.
R	Integer; number of Monte Carlo draws. Default 20000L.
bootstrap	Integer; number of bootstrap replicates (DE and FIML only).
boot_ci_type	Character; bootstrap CI type: "perc", "bc", or "bca.simple".
iseed, seed	Integer seeds for bootstrap and Monte Carlo, respectively.
fixed.x	Logical; passed to lavaan.
ci_method	CI engine: "bootstrap" or "mc". If NULL (default) the choice is "bootstrap" for $Na = "DE"$ and "mc" otherwise.
MCmethod	If Na = "FIML" and ci_method = "mc", choose "mc" (default) or "bootSD".
standardized	Logical; if TRUE, return standardized effects. Default FALSE.
verbose	Logical; print progress messages.

wsMed 23

Details

Model structures:

- "P": parallel mediation
- "CN": chained (serial) mediation
- "CP": chained then parallel
- "PC": parallel then chained

Missing-data strategies:

- "DE": list-wise deletion
- "FIML": full-information maximum likelihood
- "MI": multiple imputation via mice

Confidence-interval engines:

- Bootstrap: percentile, BC, or BCa (DE and FIML only)
- Monte Carlo: draws via semmcci (all Na options)

For Na = "FIML", you may choose MCmethod = "mc" (default) or "bootSD" to add a finite-sample SD correction.

Workflow: (1) preprocess -> (2) generate SEM syntax -> (3) fit -> (4) compute confidence intervals -> (5) optional: standardize estimates.

Value

An object of class "wsMed" with elements:

data Preprocessed data frame.

sem_model Generated lavaan syntax.

mc List with Monte Carlo draws, bootstrap tables (if any), and the fitted model.

moderation Conditional or moderated effect tables.

form, Na, alpha Analysis settings.

input_vars Names of all user-supplied variables.

```
data("example_data", package = "wsMed")
set.seed(123)
result <- wsMed(
   data = example_data,
   M_C1 = c("A2", "B2"),
   M_C2 = c("A1", "B1"),
   Y_C1 = "C1", Y_C2 = "C2",
   form = "P", Na = "DE"
)
print(result)</pre>
```

Index

```
data.frame, 22
GenerateModelCN, 2
GenerateModelCN(), 5, 6, 8
GenerateModelCP, 4
GenerateModelP, 5, 15
GenerateModelP(), 3, 5, 8
GenerateModelPC, 7
ImputeData, 9, 17
lavaan::sem(), 11
MCMI2, 10
plot_moderation_curve, 12
PrepareData, 13, 17
PrepareData(), 2-8
PrepareMissingData, 15, 16
print.wsMed, 18
printGM, 20
sem, 19
semmcci::MC(), 11
semmcci::MCStd(), 11
{\tt standardizedSolution\_boot\_ci}, {\tt 19}
wsMed, 15, 17, 19, 21
wsMed(), 3, 5, 6, 8
```